GANPAT UNIVERSITY										
FACULTY OF MANAGEMENT STUDIES										
Programme	MBA Branch/Spec. Busines			ss Analytics						
Semester		II				Version	1.0.0.0			
Effective from Academic Year				2020-21		Effective for t	for the batch Admitted in J			2020
Subject code		IIA08DMS		Subject Name		DATA BASE MANAAGEMENT SYSTEMS				
Teaching scheme						Examination scheme (Marks)				
(Per week)	Lecti	ure(DT)	Practi	ical(Lab.)	Total		CE	SEE		Total
	L	TU	Р	TW						
Credit	4	0	0		4	Theory	60	40		100
Hours	4	0	0		4	Practical				

Objective: This course attempts to introduce the students to database management systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from a DBMS.

Course Outcome:

Upon successful completion of this course, students should be able to:

- CO-1: Describe the fundamental elements of relational database management systems
- CO-2: Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
- CO-3: Design ER-models to represent simple database application scenarios
- CO-4: Convert the ER-model to relational tables, populate relational database and formulate SQL queries on data.
- CO-5: Improve the database design by normalization.
- CO-6: Security and storage of Data in the system
- CO-7: Familiar with basic database storage structures and access techniques: file and page organizations, indexing methods including B tree, and hashing

Theory syllabus					
Unit	Content	Hrs			
1	Introductory concepts of DBMS and Modelling :	10			
	Introduction and applications of DBMS, Purpose of data base, Data, Independence, Database System				
	architecture- levels, Mappings, Database, users and DBA				
	Relational Model :				
	Structure of relational databases, Domains, Relations, Relational algebra – fundamental operators and				
	syntax, relational algebra queries, tuple relational calculus				
	Entity-Relationship modelling and Enhanced-Entity Relationship Modelling:				
	Basic concepts, Design process, constraints, Keys, Design issues, E-R diagrams, weak entity sets,				
	extended E-R features – generalization, specialization, aggregation, reduction to E-R database schemes				
2	Relational Database design: Functional Dependency – definition, trivial and non-trivial FD, closure of FD	10			
	set, closure of attributes, irreducible set of FD, Normalization – 1Nf, 2NF, 3NF, Decomposition using FD-				
	dependency preservation, BCNF, Multi-valued dependency, 4NF, Join dependency and 5NF				
3	Query Processing & Query Optimization :	5			
	Overview, measures of query cost, selection operation, sorting, join, evaluation of expressions,				
	transformation of relational expressions, estimating statistics of expression results, evaluation plans,				
	materialized views				
4	Transaction Management :Transaction concepts, properties of transactions, serializability of	10			
	transactions, testing for serializability, System recovery, Two- Phase Commit protocol, Recovery and				
	Atomicity, Log-based recovery, concurrent executions of transactions and related problems, Locking				
	mechanism, solution to concurrency related problems, deadlock, , two-phase locking protocol, Isolation,				
	Intent locking				

Note: Version 1.0.0.0 (First Digit= New syllabus/Revision in Full Syllabus, Second Digit=Revision in Teaching Scheme, Third Digit=Revision in Exam Scheme, Forth Digit= Content Revision) L=Lecture, TU=Tutorial, P= Practical/Lab., TW= Term work, DT= Direct Teaching, Lab.= Laboratory work CE= Continuous Evaluation, SEE= Semester End Examination

5	Data Security, Storage and indexing:	10		
	Introduction, Discretionary access control, Mandatory Access Control, Data Encryption			
	Single level and multi level indexing, Dynamic Multi level indexing using B Trees and B+ Trees, Query			
	processing and Query Optimization, Introduction to database security.			
6	SQL Concepts :	15		
	Basics of SQL, DDL,DML,DCL, structure – creation, alteration, defining constraints – Primary key, foreign			
	key, unique, not null, check, IN operator,			
	Functions - aggregate functions, Built-in functions –numeric, date, string functions, set operations, sub-			
	queries, correlated sub-queries, Use of group by, having, order by, join and its types, Exist, Any, All, view			
	and its types. transaction control commands – Commit, Rollback, Save point			
	PL/SQL Concepts:			
	Cursors, Stored Procedures, Stored Function, Database Triggers			
Refer	rence Books			
1	An introduction to Database Systems by C J Date, Addition-Wesley Publications			
2	Database System Concepts by Abraham Silberschatz, Henry F. Korth& S. Sudarshan, McGrew Hill Publication			
3	Understanding SQL by Martin Gruber, BPB Publications			
4	Database Management Systems (3/e), by Raghu Ramakrishnan and Johannes Gehrke, McGraw Hill, 2003.			
5	Database Systesm- Design, Implementation and Management (7/e), by Peter Rob and Carlos Coronel, Ceng	age		
	Learning, 2007.			

Note: Version 1.0.0.0 (First Digit= New syllabus/Revision in Full Syllabus, Second Digit=Revision in Teaching Scheme, Third Digit=Revision in Exam Scheme, Forth Digit= Content Revision) L=Lecture, TU=Tutorial, P= Practical/Lab., TW= Term work, DT= Direct Teaching, Lab.= Laboratory work CE= Continuous Evaluation, SEE= Semester End Examination