GANPAT UNIVERSITY										
FACULTY OF ENGINEERING & TECHNOLOGY										
Programme		Bachelor of Technology				Branch/Spec.	Civil Engineering			
Semester		VIII				Version	2.0.0.0			
Effective from Aca		idemic Year		2019-20		Effective for the batch Admitted in 2014-19		2014-15		
Subject code		2CI813		Subject Name		Elective Paper – II (Design of Earthquake				
					Resistant Structures-II)					
Teaching scheme						Examination scheme (Marks)				
(Per week)	Lecti	ure(DT) Pract		ical(Lab.)	Total		CE	SEE	Total	
	L	TU	Р	TW						
Credit	3		1		4	Theory	40	60	100	
Hours	3		2		5	Practical	35	15	50	

Pre-requisites:

Elective Paper – I (Design of Earthquake Resistant Structures-I)

Learning Outcome:

After Completion of the Curriculum of Design of Earthquake Resistant Structure - II students can get knowledge of multi degree freedom system under lateral forces. They are also able to calculate the mode shape under lateral force and centre of mass and stiffness of the structure.

Theory syllabus					
Unit	Content	Hrs			
1	Structural dynamics	12			
	Introduction to multi degree of freedom system- continuous mass v/s lumped mass, natural				
	frequencies and mode shapes, Response spectrum analysis, modal analysis & time history				
	analysis, Dynamics related to machine foundation.				
2	Design of Multi storeyed Buildings:	12			
	Design of multi-storeyed building (G+10) for various forces including earthquake				
	& wind forces: Loads as per IS 875 & IS: 1893-2002 (Part I), Load combinations				
	as per IS: 875 (Part V), Ductile detailing of RC building as per IS: 13920 1993				
3	Retrofitting and strengthening.	7			
	Introduction, Essentials of seismic design of RCC and masonry buildings, Condition				
	assessment of existing buildings, Goals and objectives of seismic Retrofit, Retrofit versus				
	repair and rehabilitation, Steps of seismic retrofit, Retrofit of RCC building, Retrofit of				
	Foundations				
4	Advances in Earthquake Engineering	4			
	Structural control: Response of various Passive controls like Base Isolation System &				
	various dampers, Active control, Semi-active control, Hybrid control.				
5	Seminar based on topics related to syllabus	4			

Practical content

Term work shall consist of Seismic design of RC multi-storey frame building with ductile detailing in A3 CAD drawings, ERD of elevated water tank/ ERD of chimneys & silos. At least 10 problems along with theory based on the course. Preparation of various models of structural systems OR seminar/project

Text Books				
1	Pankaj Agarwal, Manish Shrikhande "Earthquake Resistant Design Of Structures" PHI Learning			
	Pvt. Ltd., 2006 - Technology & Engineering			
2	A.K.Chopra, "Dynamics of structures" Theory Application to earthquake engineering, Prentice Hall			
	of India Pvt Ltd., New Delhi.			
3	Clough & Penzin; Dynamics of structures			
Reference Books				
1	S.K.Duggal, "Earthquake Resistant Design Of Structures" Oxford publication.			
2	Paz Mario "Dynamics of structures", Mac Grawhillinc.			
3	AmarnathChakrabarti, CPWD, IBC & IIT madras "Handbook on Seismic Retrofit of Buildings"			
	Narosa publication house, New delhi.			
4	A.K.Sharma and R. Subramanian "Handbook on Repair & Rehabilitation of Reinforced Concrete			
	building".			
5	P.Srinivasan&S.Vaidyanathan"Handbook of Machine Foundations" SERC Chennai.			