GANPAT UNIVERSITY										
	FACULTY OF ENGINEERING & TECHNOLOGY									
Programme		Diplom	a Engii	neering		Branch	Mechanical			
Semester III					Version	1.0.0.0				
Effective from	Effective from Academic Year 2019-20			Effective for the batch Admitted in July 2018						
Subject code	.	1ME23	03	Subject N	Name	Fluid Mechanics and Machinery				
Teaching sch	eme					Examination scheme (Marks)				
(Per week)	Lecti	ıre(DT)	Pract	ical(Lab.)	Total		CE	SEE	Total	
L TU P		TW								
Credit	3	0	1	0	4	Theory 40 60		100		
Hours	3	0	2	0	5 Practical 30 20 50					

n	
Pre-req	HIISITAS
	aisices

Definitions and basic laws of physics with unit system are requirement.

Course Learning Outcomes:

The course content should be taught and implemented with an aim to develop different skills leading to the achievement of the following competencies and course learning outcomes:

- CO1. To understand fluid properties, fluid flow patterns and flow through pipes in real flow situation.
- CO2. To apply and explain fluid equations in simple industrial situations.
- CO3. To develop an understanding of hydraulic machine generally used in industries.
- CO4. To implement with the aim to develop different types of skills to select, operate and maintain fluid machineries based on fluid laws and characteristics.
- CO5. To Verify fluid flows, fluid characteristics and types of fluid.

Course Content								
Name of UNIT	Unit Content	Unit Learning Outcomes	Marks	Hrs				
UNIT – 1 Fluid and fluid properties	1.1 Concept and classification of fluid 1.2 Properties of fluid 1.3 Newton's law of viscosity 1.4 Simple numerical examples	1a Explain the effect of fluid properties on a flow system.	6	4				
UNIT – 2 Fluid statics	 2.1 Laws of fluid statics 2.2 Classification, working and applications of pressure measuring devices-Different types of Manometers and Mechanical gauges 2.3 Selection criteria of pressure measuring devices 2.4 Simple numerical examples 	2a Select and use pressure measuring devices.	9	7				

			_	
UNIT – 3	3.1 Concept of control volume	3a Identify type of fluid flow	9	6
Fluid	3.2 Proof of continuity and energy	patterns.		
kinematics and	equation	3b Describe and use Continuity equitation to one		
dynamics	3.3 Momentum equation without	dimensional fluid flow		
	proof	situations.		
	3.4 Types of fluid flow	3c Explain and Apply Fluid		
	3.5 Flow patterns for ideal, laminar,	equations (Energy,		
	turbulent and compressible fluid	Momentum and Bernoulli's)		
	flow	in simple Industrial		
	3.6 Fluid energy-types	situations.		
	3.7 Euler's equation (Concept and			
	definition without derivation)			
	3.8 Bernoulli's equation			
	i. Concept and definition			
	ii. Limitations and assumptions			
	iii. Derivation with and without			
	use of Euler's equation			
UNIT – 4	4.1 Classification of flow measuring	4a Select and use flow measuring	12	9
Flow	devices	devices based on given		
measurement	4.2 Flow measurement-parameters	situation.		
	and units of measurements			
	4.3Classification, principle, working,			
	application of devices			
	i. Pitot tube			
	ii. Venturimeter			
	iii. flow nozzle			
	iv. rotameter			
	v. orifice			
	vi. notch			
	4.4 Selection criteria of flow			
	measuring devices			
	4.5 Simple numerical examples on all			
	of the above		_	
UNIT – 5	5.1 Introduction to pipe and pipe	5a Explain water hammer and	9	7
Flow through	flow	surge tank		
pipes	5.2 Reynold's experiment	5b Select pipe of appropriate size		
	5.3 Friction factor, Darcy's equation,	based on given situation.		
	Moody's chart			
	5.4 Water hammer effect			
	5.5 Selection criteria for pipe and			
	pipe sizes			
	5.6 Simple numerical examples			

UNIT – 6	Pumps	6a Select and use an appropriate	15	12
Hydraulic	6.1 Concept and classification of	pump with reference to given	13	12
pump and	•	application.		
	pumps	• •		
prime movers	6.2 Construction, working and			
	applications of Centrifugal pump,	parameters of a given		
	Reciprocating pump, submersible	Centrifugal and Reciprocating		
	pump, rotary positive	Pump.		
	displacement type pump like gear	6c Interpret characteristic curves		
	pump, vane pump	of a given pump.		
	6.3 Performance (efficiency,	6d Select an appropriate turbine		
	discharge, head, specific speed	with reference to given		
	and power consumption) of	situation.		
	centrifugal pump and			
	reciprocating pump with simple			
	numerical examples			
	6.4 Characteristic curves of			
	centrifugal pump and			
	reciprocating pump			
	6.5 Need of priming of centrifugal			
	pump			
	6.6 Selection of pump			
	Hydraulic Prime Movers			
	6.7 Classification, construction,			
	working principle and			
	applications of			
	i. Pelton wheel turbine			
	ii. Kaplan turbine			
	iii. Francis turbine			
	III. I Taricis tarbiffe			

List of Practical

The practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate course learning outcomes.

comes	s in cognitive,	, psychomotor and affective domain to demonstrate course learning outcomes.
No.	Unit	Name of Practical
1	1	Demonstrate various fluid properties.
2	2	Demonstrate and Measure pressure using:
		i. Various manometers.
		ii. Various Pressure gauges.
3	3	Verify Bernoulli's theorem.
4	4	Measure fluid flow by Venturimeter.
5	4	Measure fluid flow by Nozzle.
6	4	Measure fluid flow by Orifice meter.
7	4	Measure fluid flow by "V" Notch.
8	5	Estimate Reynolds number using given test rig.
9	5	Determine major and minor head loss through pipes.
10	6	Perform testing of centrifugal pump as per BIS.
11	6	Find faults and remedies for Centrifugal pump. Prepare trouble shooting chart of
		Centrifugal pump.
12	6	Perform testing of Reciprocating pump as per BIS.
13	6	Perform testing of Pelton wheel turbine
14	6	Study and write a report on working of different types of water turbines.

List o	f Instruments / Equipment / Trainer Board
1	Different manometers
2	Pitot tube
3	Various mechanical pressure gauges
4	Hydraulic test rig-comprising facilities to verify Bernoulli's theorem, to measure fluid flow by Venturimeter; nozzle; orifice meter, rota meter, "V" notch and major and minor head loss through pipes
5	Centrifugal pump test rig
6	Reciprocating pump test rig
7	Hydraulic prime movers (Pelton wheel) test rig.
8	Reynolds's experiment test rig

List o	List of Reference Books					
No	Title of Reference Books	Authors	Publication			
1	Fluid mechanics& hydraulic	R. K. Bansal	Lakhsmi publication			
	Machines.					
2	Fluid mechanics& hydraulic	R. S. Khurmi	S.chand&Co.Ltd			
	Machines. (in S.I. units)					
3	Hydraulic & Hydraulic machines	R.C. Patel &	Acharya Book Depot			
		A.D. Pandya				
4	Fluid mechanics& hydraulic	A.R. Basu	DHANPAT RAI&			
5	Fundamental of fluid mechanics(in	Dr. D.S. Kumar	Ketson Pub. house			
	S.I. units)					
6	Fluid mechanics& hydraulic	S.C. Gupta	PERSON Education			
	machines					

Link o	Link of Learning Web Resource			
1	www.youtube.com/watch?v=VyR8aeioQrU			
2	http://www.youtube.com/watch?v=R6_q5gxf4vs			
3	howstuffworks.com			
4	http://www.youtube.com/watch?v=0p03UTgpnDU			
5	http://www.youtube.com/watch?v=A3ormYVZMXE			
6	http://www.youtube.com/watch?v=TjzKpke0nSU			
7	http://www.youtube.com/watch?v=vI7GteLxgdQ			
8	http://www.youtube.com/watch?v=cldMNOysMGI			

CO'S AND PO'S MAPPING

PO'S/CO'S		CO1	CO2	CO3	CO4	CO5
PO1	Proficiently applies concepts, theories and techniques	SUB	SUB	SUB	SUB	SUB
	of the relevant natural, physical sciences and					
	knowledge in mathematics.					
PO2	Use basic principles of statics, dynamics, fluid	SUB	SUB	SUB	SUB	SUB
	mechanics, engineering materials, strength of					
	materials engineering standards and manufacturing					
	processes to aid in the design, characterization,					
	analysis and troubleshooting of mechanical system.					
PO3	Apply their engineering knowledge, critical thinking	SUB	SUB	SUB	SUB	SUB
	and problem solving skills in professional engineering					
	practice or in non-engineering fields, such as law,					
	medicine or business.					
PO4	Continue their intellectual development, through, for	MED.	MED.	MED.	MED.	MED.
	example, graduate education or professional					
	development courses					
PO5	Use of appropriate computer languages, modern tool	MED.	MED.	MED.	MED.	MED.
	and application software that pertain to Mechanical					
	engineering technology systems.					
PO6	Ability to identify problems, conducts experiments,	MED.	MED.	MED.	MED.	MED.
	gather data, analyze data and produce results.					
PO7	Retain the intellectual curiosity that motivates lifelong	NONE	NONE	NONE	NONE	NONE
	learning and allows for a flexible response to the					
	rapidly evolving challenges of the 21st century					
PO8	Design a system component or process to meet	MED.	MED.	MED.	MED.	MED.
	desired need within realistic constraints, such as					
	economic, environmental and social.					
PO9	Values the need for, and demonstrates, ethical	NONE	NONE	NONE	NONE	NONE
	conduct and professional accountability.					
PO10	Demonstrates effective communication to professional	SLI	SLI	SLI	SLI	SLI
	and wider audiences.					
PO11	Appreciates entrepreneurial approaches to	NONE	NONE	NONE	NONE	NONE
	engineering practice.					
PO12	Apply commitment to quality, timeliness, and	SLI	SLI	SLI	SLI	SLI
	continuous improvement.					