GANPAT UNIVERSITY									
FACULTY OF ENGINEERING & TECHNOLOGY									
Programme Bachelor of Tec			or of Tech	hnology		Branch/Spec.	Marine Engineering		
Semester	IV				Version	2.0.0.0			
Effective from Academic Year				2015-16		Effective for the batch Admitted in July 2014			July 2014
Subject code 2MR406			6	Subject Name		Fluid Mechanics & Hydraulics			
Teaching scheme						Examination scheme (Marks)			
(Per week)	Lecture(DT)		Practical(Lab.)		Total		CE	SEE	Total
(Per week)	L	TU	Р	TW	Total		CE	SEE	Total
Credit	2	0	1	0	3	Theory	40	60	100
Hours	2	0	2	0	4	Practical	25	25	50

Pre-requisites:

Learning Outcome:

After successful completion of the course, student will be able to

• Comply with the TAR Book Competency number 4.5, 5.1 & 9.7

Unit	Content	Hrs		
1.	Properties of fluid:			
	• Types of fluid, law of continuum, properties of fluid-surface tension, cohesion & adhesion, viscosity & its measurement- rotating viscometer, capillarity, bulk modulus of elasticity, compressibility, vapor pressure and cavitations.			
2.	Fluid static:	7		
	 Pressure & its measurement, hydrostatic law, hydrostatic forces on submerged surfaces vertical, horizontal, inclined & curved surface, Variation of forces with depth, buoyancy and floatation, 			
	 Centre of pressure on a rectangular vertical plane surface or triangular plane surface, both with one edge parallel to the surface of the liquid, metacentric height, stability of immersed and floating body. 			
3.	Fluid Kinematics:	8		
	 Types of fluid flow, velocity & acceleration of fluid flow, rate of flow & continuity equation, vortex flows. Full bore flow of liquid through pipes under constant head. 			
	 Flow through orifice. Flow through pipes, Flow through parallel concentric pipes, Flow through parallel plates, Coefficient of velocity, contraction of area and discharge. 			
	 Effects on (a) Sounding pipe (b) Air release pipes (c) Stand pipes when containing liquids 			
4.	Fluid Dynamics:	8		
	 Prandtl No. Nussle No., Reynolds No., Stanton No., Grashof No, Graetz No, Natural and Forced Convection. Control volume & Control surface, Euler's equation, 			
	• Bernoulli's equation and its applications. Flow rate measurement-Venturimeter, Orificemeter&Pitot tube Compressible flow: - velocity of sound, mach no & mach			
	cone.			
5.	Fluid Machines:	4		
	 Impulse momentum principal force exerted by a jet on flat plate, hinged flat plate, moving flat plate, curved and pipe bend. Surge Pressure and control 			
	Blade diagram for centrifugal pump			

6.	Hydraulic Turbines:			
	 Impulse reaction turbine, pelton wheel, Francis, propeller& Kaplan turbine, effective head, available power & efficiencies for above turbines, draft tube, specific speed of turbine, cavitation, performance characteristics of turbines 			
	TOTAL	36		

Practical content

- Buoyancy Experiment Metacentric Height
- Measurement of flow using Pitot tube, flow meter, flow nozzle Bernoulli's equation-Venturimeter.
- To verify the Bernoulli's theorem with help of given apparatus.
- To determine coefficient of discharge of venturimeter and orificemeter.
- To determine friction losses through pipes.
- To determine coefficient of discharge of through notches and weirs.
- To study the performance characteristics of a constant speed centrifugal pump, specific speed. Performance characteristics of multistage pump.
- To study about the Positive discharge pumps
- To find the Characteristics of Impulse and Reaction Turbine Specific speed and unit quantities.
- Demonstrate of Hydraulic and Pneumatic system.
- Perform testing of pelton Wheel

Text Books					
1	Fluid Mechanics & Machine	-by R.K. Bansal			
Refe	Reference Books				
1	Fluid Mechanics by	-YunusCengel.			
2	Fluid Mechanics & Machine	-by K.R. Arora			
3	Fluid Mechanics & Hydraulic Machines	- R.K. Rajputh			