| GANPAT UNIVERSITY | | | | | | | | | | |-------------------------------------|-------------|----|-----------------|--------------|---------|---|--------------------|-----|-----------| | FACULTY OF ENGINEERING & TECHNOLOGY | | | | | | | | | | | Programme Bachelor of Tec | | | or of Tech | hnology | | Branch/Spec. | Marine Engineering | | | | Semester | IV | | | | Version | 2.0.0.0 | | | | | Effective from Academic Year | | | | 2015-16 | | Effective for the batch Admitted in July 2014 | | | July 2014 | | Subject code 2MR406 | | | 6 | Subject Name | | Fluid Mechanics & Hydraulics | | | | | Teaching scheme | | | | | | Examination scheme (Marks) | | | | | (Per week) | Lecture(DT) | | Practical(Lab.) | | Total | | CE | SEE | Total | | (Per week) | L | TU | Р | TW | Total | | CE | SEE | Total | | Credit | 2 | 0 | 1 | 0 | 3 | Theory | 40 | 60 | 100 | | Hours | 2 | 0 | 2 | 0 | 4 | Practical | 25 | 25 | 50 | ## Pre-requisites: ## Learning Outcome: After successful completion of the course, student will be able to • Comply with the TAR Book Competency number 4.5, 5.1 & 9.7 | Unit | Content | Hrs | | | |------|--|-----|--|--| | 1. | Properties of fluid: | | | | | | • Types of fluid, law of continuum, properties of fluid-surface tension, cohesion & adhesion, viscosity & its measurement- rotating viscometer, capillarity, bulk modulus of elasticity, compressibility, vapor pressure and cavitations. | | | | | 2. | Fluid static: | 7 | | | | | Pressure & its measurement, hydrostatic law, hydrostatic forces on submerged surfaces
vertical, horizontal, inclined & curved surface, Variation of forces with depth, buoyancy
and floatation, | | | | | | Centre of pressure on a rectangular vertical plane surface or triangular plane surface,
both with one edge parallel to the surface of the liquid, metacentric height, stability of
immersed and floating body. | | | | | 3. | Fluid Kinematics: | 8 | | | | | Types of fluid flow, velocity & acceleration of fluid flow, rate of flow & continuity
equation, vortex flows. Full bore flow of liquid through pipes under constant head. | | | | | | Flow through orifice. Flow through pipes, Flow through parallel concentric pipes, Flow
through parallel plates, Coefficient of velocity, contraction of area and discharge. | | | | | | Effects on (a) Sounding pipe (b) Air release pipes (c) Stand pipes when containing
liquids | | | | | 4. | Fluid Dynamics: | 8 | | | | | Prandtl No. Nussle No., Reynolds No., Stanton No., Grashof No, Graetz No, Natural and
Forced Convection. Control volume & Control surface, Euler's equation, | | | | | | • Bernoulli's equation and its applications. Flow rate measurement-Venturimeter, Orificemeter&Pitot tube Compressible flow: - velocity of sound, mach no & mach | | | | | | cone. | | | | | 5. | Fluid Machines: | 4 | | | | | Impulse momentum principal force exerted by a jet on flat plate, hinged flat plate,
moving flat plate, curved and pipe bend. Surge Pressure and control | | | | | | Blade diagram for centrifugal pump | | | | | 6. | Hydraulic Turbines: | | | | |----|---|----|--|--| | | Impulse reaction turbine, pelton wheel, Francis, propeller& Kaplan turbine, effective
head, available power & efficiencies for above turbines, draft tube, specific speed of
turbine, cavitation, performance characteristics of turbines | | | | | | TOTAL | 36 | | | ## Practical content - Buoyancy Experiment Metacentric Height - Measurement of flow using Pitot tube, flow meter, flow nozzle Bernoulli's equation-Venturimeter. - To verify the Bernoulli's theorem with help of given apparatus. - To determine coefficient of discharge of venturimeter and orificemeter. - To determine friction losses through pipes. - To determine coefficient of discharge of through notches and weirs. - To study the performance characteristics of a constant speed centrifugal pump, specific speed. Performance characteristics of multistage pump. - To study about the Positive discharge pumps - To find the Characteristics of Impulse and Reaction Turbine Specific speed and unit quantities. - Demonstrate of Hydraulic and Pneumatic system. - Perform testing of pelton Wheel | Text Books | | | | | | |------------|--------------------------------------|-----------------|--|--|--| | 1 | Fluid Mechanics & Machine | -by R.K. Bansal | | | | | Refe | Reference Books | | | | | | 1 | Fluid Mechanics by | -YunusCengel. | | | | | 2 | Fluid Mechanics & Machine | -by K.R. Arora | | | | | 3 | Fluid Mechanics & Hydraulic Machines | - R.K. Rajputh | | | | | | | | | | |