GANPAT UNIVERSITY										
Kantaben Kashiram Institute of Agricultural Sciences and Research										
Programme		B.Sc. (I	Hons)	Agricultur	e	Branch/Spec	Agricultur	е		
Semester		Ш				Version	1.0.0.0			
Effective fro	m Aca	ademic	Year	2022-23		Effective for tl	the batch Admitted in July 2021			
Subject cod	le	IIIA02F	РВ	Subject	Name	Fundamentals	s of PlantBreeding			
Teaching scheme						Examination scheme (Marks)				
(Per week)	Lect	ecture Practi		ical(Lab.	Tota	CE SEE Total		Total		
	(DT))		1					
	L	TU	Р	TW						
Credit	2	0	1	=	3	Theory	35	50	85	
Hours	2	0	2	-	4	Practical	15	00	15	

Objectives of the course:

- CO1: To know about achievements, developments, concepts, nature, principles and role of plant breeding
- CO2:To know about basics of plant breeding methods, its application and possible results
- CO3:To know about mode of reproduction, pollination and apomixes
- CO4:To know about components of genetic variance, heritability and genetic advance in plant breeding
- CO5:To know about genetic crop improvement, development and release of crop variety

Theory Syllabus							
Unit	Content	Hrs					
1	Historical development, concept, nature and role of plant breeding, major achievements and future prospects; Genetics in relation to plant breeding, modes of reproduction and apomixes, self-incompatibility and male sterility- genetic consequences, cultivar options.	6					
2	Acclimatization and Introduction; Centers of origin/ diversity, components of Genetic variation; Heritability and genetic advance; Genetic basis and breeding methods in self- pollinated crops - mass and pure line selection, hybridization techniques and handling of segregating population; Multiline concept.	8					
3	Domestication, Concepts of population genetics and Hardy-Weinberg Law, Genetic basis and methods of breeding cross pollinated crops, modes of selection; Population improvement Schemes- Ear to row method, Modified Ear to Row, recurrent selection schemes; Heterosis and inbreeding depression, development of inbred lines and hybrids, composite and synthetic varieties; Breeding methods in asexually propagated crops, clonal selection and hybridization	8					
4	Maintenance of breeding records and data collection; Wide hybridization and prebreeding; Polyploidy in relation to plant breeding, mutation breeding-methods and uses; Breeding for important biotic and abiotic stresses; Biotechnological tools-DNA markers and marker assisted selection. Participatory plant breeding; Intellectual Property Rights, Patenting, Plant Breeders and & Farmer's Rights.	8					

Practical Content

- 1. Plant Breeder's kit.
- 2. Study of germplasm of various crops.
- 3. Study of floral structure of self-pollinated and cross pollinated crops.
- 4, Emasculation and hybridization techniques in self & cross pollinated crops.
- 5. Consequences of inbreeding on genetic structure of resulting populations.
- 6. Study of male sterility system.
- 7. Handling of segregation populations.

- 8. Methods of calculating mean, range, variance, standard deviation, heritability.
- 9. Designs used in plant breeding experiments, analysis of Randomized Block Design.
- 10. To work out the mode of pollination in a given crop and extent of natural out-crossing. Prediction of performance of double cross hybrids.

Reference Book

Principles of Plant Genetics and Breeding, George Acquaah, Wiley-Blackwell.
Plant Breeding Principales and methods. B. D. Singh. Second adition, Kalyani Publisher
Fundamentals of Plant Breeding. Phundan Singh. Kalyani Publisher